论文标题
在哈密顿与迈西尔斯基的图形上
On Hamiltonian-Connected and Mycielski graphs
论文作者
论文摘要
如果在$ g $的任意两个顶点之间存在哈密顿式路径,则图表$ g $是与哈密顿的相关性。众所周知,如果$ g $是2个连接的,则图$ g^2 $是哈密顿式连接的。在本文中,我们证明,与4相关的每个自我平衡绘制图的平方是与4的平方。如果$ g $是$ k $ - 批判图,则我们证明Mycielski Graph $μ(g)$是$(k+1)$ - 关键图。 Jarnicki等[7]事实证明,对于每一个奇数订单的图表,$ g $的ycielski图$μ(g)$ g $ is hamiltonian连接。他们还提出了一个猜想,如果$ g $是与汉密尔顿连接的,而不是$ k_2 $,则$μ(g)$是汉密尔顿连接的。在本文中,我们还证明了这个猜想。
A graph $G$ is Hamiltonian-connected if there exists a Hamiltonian path between any two vertices of $G$. It is known that if $G$ is 2-connected then the graph $G^2$ is Hamiltonian-connected. In this paper we prove that the square of every self-complementary graph of order grater than 4 is Hamiltonian-connected. If $G$ is a $k$-critical graph, then we prove that the Mycielski graph $μ(G)$ is $(k+1)$-critical graph. Jarnicki et al.[7] proved that for every Hamiltonian graph of odd order, the Mycielski graph $μ(G)$ of $G$ is Hamiltonian-connected. They also pose a conjecture that if $G$ is Hamiltonian-connected and not $K_2$ then $μ(G)$ is Hamiltonian-connected. In this paper we also prove this conjecture.