论文标题

有限的非亚伯简单组的置换作用的总闭合

Total closure for permutation actions of finite nonabelian simple groups

论文作者

Freedman, Saul D., Giudici, Michael, Praeger, Cheryl

论文摘要

对于一个积极的整数$ k $,如果每套$ g $忠实地采取行动的每套$ω$,则$ g $是完全$ k $的,$ g $是$ \ mathrm {sym}(sym}(ω)$的最大子群,它在$ g $ -orbits中都在$ g $ -orbits中均在$ g $ω$ω$ k $ k $ k $ k $ k $ k $ cd时\ cd cd。每个有限的$ g $都是完全$ | g | $ c的,$ k(g)$表示整数最少$ k $,因此$ g $完全是$ k $ cluct的。我们解决了确定有限简单组$ g $的关闭数字$ k(g)$的问题。在我们的工作之前,众所周知,$ k(g)= 2 $用于循环序列的循环群和精确的六个零星简单组,而所有其他有限简单组的$ k(g)\ geq3 $。我们确定交替组的值,即$ k(a_n)= n-1 $。此外,对于所有简单的组$ g $,除了交替的组和古典组以外,我们表明$ k(g)\ leq 7 $。最后,如果$ g $是一个有限的简单古典群体,具有天然的尺寸$ n $模块,我们表明$ k(g)\ leq n + 2 $如果$ n \ ge 14 $,而$ k(g)\ le \ le \ lfloor n/3 + 12 \ rfloor $,否则,某些群体的范围较小,较小的界限。这是通过确定$ g $原始操作的基本大小的统一上限(取决于$ n $和$ g $的类型)来实现的,这是基于已知的特定动作的范围。我们提出了一些开放问题,旨在完成有限简单组的关闭数字的确定。

For a positive integer $k$, a group $G$ is said to be totally $k$-closed if for each set $Ω$ upon which $G$ acts faithfully, $G$ is the largest subgroup of $\mathrm{Sym}(Ω)$ that leaves invariant each of the $G$-orbits in the induced action on $Ω\times\cdots\times Ω=Ω^k$. Each finite group $G$ is totally $|G|$-closed, and $k(G)$ denotes the least integer $k$ such that $G$ is totally $k$-closed. We address the question of determining the closure number $k(G)$ for finite simple groups $G$. Prior to our work it was known that $k(G)=2$ for cyclic groups of prime order and for precisely six of the sporadic simple groups, and that $k(G)\geq3$ for all other finite simple groups. We determine the value for the alternating groups, namely $k(A_n)=n-1$. In addition, for all simple groups $G$, other than alternating groups and classical groups, we show that $k(G)\leq 7$. Finally, if $G$ is a finite simple classical group with natural module of dimension $n$, we show that $k(G)\leq n+2$ if $n \ge 14$, and $k(G) \le \lfloor n/3 + 12 \rfloor$ otherwise, with smaller bounds achieved by certain families of groups. This is achieved by determining a uniform upper bound (depending on $n$ and the type of $G$) on the base sizes of the primitive actions of $G$, based on known bounds for specific actions. We pose several open problems aimed at completing the determination of the closure numbers for finite simple groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源