论文标题

通过可区分的物理学学习复杂的运动技能

Complex Locomotion Skill Learning via Differentiable Physics

论文作者

Fang, Yu, Liu, Jiancheng, Zhang, Mingrui, Zhang, Jiasheng, Ma, Yidong, Li, Minchen, Hu, Yuanming, Jiang, Chenfanfu, Liu, Tiantian

论文摘要

可区分的物理可以实现有效的基于梯度的神经网络(NN)控制器的优化。但是,现有工作通常只能为NN控制器提供有限的功能和可推广性。我们提出了一个实用的学习框架,该框架输出了能够具有显着提高复杂性和多样性的任务的统一NN控制器。为了系统地提高训练的鲁棒性和效率,我们研究了对基线方法的一系列改进,包括定期激活功能和量身定制的损失功能。此外,我们发现我们对批处理和ADAM优化器有效地采用了培训复杂的运动任务。我们通过挑战性的运动任务和多个机器人设计评估了可区分质量弹簧和材料点方法(MPM)模拟的框架。实验表明,我们的学习框架基于可区分的物理学,比强化学习更好,并且收敛速度更快。我们证明,用户可以使用在我们系统中训练的统一的NN控制器进行交互式控制软机器人的运动并在多个目标之间进行切换。代码可在https://github.com/erizmr/complex-locomotion-skill-learning-via-differentible-physys中获得。

Differentiable physics enables efficient gradient-based optimizations of neural network (NN) controllers. However, existing work typically only delivers NN controllers with limited capability and generalizability. We present a practical learning framework that outputs unified NN controllers capable of tasks with significantly improved complexity and diversity. To systematically improve training robustness and efficiency, we investigated a suite of improvements over the baseline approach, including periodic activation functions, and tailored loss functions. In addition, we find our adoption of batching and an Adam optimizer effective in training complex locomotion tasks. We evaluate our framework on differentiable mass-spring and material point method (MPM) simulations, with challenging locomotion tasks and multiple robot designs. Experiments show that our learning framework, based on differentiable physics, delivers better results than reinforcement learning and converges much faster. We demonstrate that users can interactively control soft robot locomotion and switch among multiple goals with specified velocity, height, and direction instructions using a unified NN controller trained in our system. Code is available at https://github.com/erizmr/Complex-locomotion-skill-learning-via-differentiable-physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源