论文标题

多语言联合学习的预审前的模型

Pretrained Models for Multilingual Federated Learning

论文作者

Weller, Orion, Marone, Marc, Braverman, Vladimir, Lawrie, Dawn, Van Durme, Benjamin

论文摘要

自联合学习(FL)出现以来,研究将这些方法应用于自然语言处理(NLP)任务。尽管NLP的FL中有大量论文,但以前没有研究过多语言文本对FL算法的影响。此外,多语言文本提供了一个有趣的途径,可以检查非IID文本(例如不同语言)对自然发生数据的影响。我们使用不同的联合和非填充学习算法探索三个多语言任务,语言建模,机器翻译和文本分类。我们的结果表明,即使使用非IID分区,使用预估计的模型也会减少FL的负面影响,从而帮助它们在附近或更好的集中式学习(无隐私)学习。

Since the advent of Federated Learning (FL), research has applied these methods to natural language processing (NLP) tasks. Despite a plethora of papers in FL for NLP, no previous works have studied how multilingual text impacts FL algorithms. Furthermore, multilingual text provides an interesting avenue to examine the impact of non-IID text (e.g. different languages) on FL in naturally occurring data. We explore three multilingual language tasks, language modeling, machine translation, and text classification using differing federated and non-federated learning algorithms. Our results show that using pretrained models reduces the negative effects of FL, helping them to perform near or better than centralized (no privacy) learning, even when using non-IID partitioning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源