论文标题
双曲线群的拓扑流和无穷大的措施的不变度量
Invariant measures of the topological flow and measures at infinity on hyperbolic groups
论文作者
论文摘要
我们表明,对于每个非元素双曲线群,相关的拓扑流程空间都基于有限类型的瞬时子迁移来进行编码。应用包括曼哈顿曲线的规律性结果,具有电势的最大Hausdorff维度度量的独特性,以及主导代表家族家族的相交数字的真实分析性,从而提供了Bridgeman,Canary,Canary,Labourie和Sambarino在2015年建立的结果的直接证明。
We show that for every non-elementary hyperbolic group, an associated topological flow space admits a coding based on a transitive subshift of finite type. Applications include regularity results for Manhattan curves, the uniqueness of measures of maximal Hausdorff dimension with potentials, and the real analyticity of intersection numbers for families of dominated representation, thus providing a direct proof of a result established by Bridgeman, Canary, Labourie and Sambarino in 2015.