论文标题
通过深3D拟合和度量学习来实现个人格雷维的斑马识别
Towards Individual Grevy's Zebra Identification via Deep 3D Fitting and Metric Learning
论文作者
论文摘要
本文结合了一条管道中的物种检测,3D模型拟合和度量学习的深度学习技术,通过利用独特的外套图案从照片中进行单个动物识别。这是尝试此操作的第一项工作,与传统的2D边界框或基于CNN的CNN识别管道相比,该方法提供了有效且明确的观点归一化,并可以直接对学习的生物识别人群空间进行直接可视化。请注意,由于使用度量,该管道也很容易适用于打开集合和零射击重新识别方案。我们将提出的方法应用于单个Grevy的斑马(Equus Grevyi)识别,并在一项有关Smalst数据集的小型研究中显示,使用3D模型拟合确实可以使性能受益。特别是,与数据集的2D边界框方法相比,来自3D拟合模型的背面纹理将识别精度从48.0%提高到56.8%。尽管这项研究的准确性太小,无法估算大型现实应用程序设置可实现的全部性能潜力,并且在与抛光工具相比,我们的工作为下一步的动物生物识别技术奠定了概念和实用的基础,以深度度量学习驱动了深度度量的驱动,完全3DDDD-DD-ISAIRE ADEA IARE AIMATION在公开的人群环境中。我们将网络权重和相关的促进源代码与本文发布,以完全可重复性,并作为进一步研究的灵感。
This paper combines deep learning techniques for species detection, 3D model fitting, and metric learning in one pipeline to perform individual animal identification from photographs by exploiting unique coat patterns. This is the first work to attempt this and, compared to traditional 2D bounding box or segmentation based CNN identification pipelines, the approach provides effective and explicit view-point normalisation and allows for a straight forward visualisation of the learned biometric population space. Note that due to the use of metric learning the pipeline is also readily applicable to open set and zero shot re-identification scenarios. We apply the proposed approach to individual Grevy's zebra (Equus grevyi) identification and show in a small study on the SMALST dataset that the use of 3D model fitting can indeed benefit performance. In particular, back-projected textures from 3D fitted models improve identification accuracy from 48.0% to 56.8% compared to 2D bounding box approaches for the dataset. Whilst the study is far too small accurately to estimate the full performance potential achievable in larger-scale real-world application settings and in comparisons against polished tools, our work lays the conceptual and practical foundations for a next step in animal biometrics towards deep metric learning driven, fully 3D-aware animal identification in open population settings. We publish network weights and relevant facilitating source code with this paper for full reproducibility and as inspiration for further research.