论文标题

学习网格运动技术,并应用于流体结构相互作用

Learning Mesh Motion Techniques with Application to Fluid-Structure Interaction

论文作者

Haubner, Johannes, Hellan, Ottar, Zeinhofer, Marius, Kuchta, Miroslav

论文摘要

网格变性是用于流体结构相互作用(FSI)模拟的瓶颈,并且通过映射方法进行了形状优化。在这两种情况下,都需要适当的网格运动技术。选择通常基于启发式方法,例如,偏微分方程(PDE)的解决方案操作员,例如拉普拉斯或双旋转方程。尤其是后者在大型位移方面表现出良好的数值性能,这很昂贵。而且,从连续的角度来看,选择网格运动技术在一定程度上是任意的,对物理相关的数量没有影响。因此,我们考虑受机器学习启发的方法。我们提出了一种混合PDE-NN方法,其中神经网络(NN)在二阶非线性PDE中作为系数的参数化。我们通过选择神经网络体系结构确保了非线性PDE的解决方案。此外,我们提出了一种方法,即神经网络纠正谐波扩展,以免改变边界位移。为了避免耦合有限元和机器学习软件的技术困难,我们将单片FSI系统分解为三个较小的子系统。这允许在单独的步骤中求解网格运动方程。我们通过将其应用于FSI基准问题来评估学习网格运动技术的质量。此外,我们讨论了学习的网格运动运算符的概括性和计算成本。

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned mesh motion operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源