论文标题
收缩期几乎基因模型2
Systolic almost-rigidity modulo 2
论文作者
论文摘要
Mod 2 $ 2 $ dimension $ 1 $和Codimension $ 1 $的产品的产品不可能使用电源法收缩期自由。这意味着任何封闭的$ n $二维的Riemannian流形$ m $有限的本地几何形状服从以下收缩不平等:其mod $ 2 $ 2 $尺寸的$ 1 $ 1 $ 1 $ 1 $和$ n-1 $的产物从上面从上面界限为$ c(n,\ varepsilon) $ H_1(M; \ Mathbb {Z}/2)$是非平凡的)。
No power law systolic freedom is possible for the product of mod $2$ systoles of dimension $1$ and codimension $1$. This means that any closed $n$-dimensional Riemannian manifold $M$ of bounded local geometry obeys the following systolic inequality: the product of its mod $2$ systoles of dimensions $1$ and $n-1$ is bounded from above by $c(n,\varepsilon) \mbox{Vol}(M)^{1+\varepsilon}$, if finite (if $H_1(M; \mathbb{Z}/2)$ is non-trivial).