论文标题

数据驱动的层次矩阵嵌套基矩阵

Data-driven Construction of Hierarchical Matrices with Nested Bases

论文作者

Cai, Difeng, Huang, Hua, Chow, Edmond, Xi, Yuanzhe

论文摘要

层次矩阵提供了有力的表示,可显着降低与密度内核矩阵相关的计算复杂性。对于一般内核函数,基于插值的方法广泛用于层次矩阵的有效构建。在本文中,我们提出了一个快速的层次数据减少(HIDR)程序,并具有$ o(n)$复杂性,用于具有嵌套基础的层次矩阵的记忆效率构造,其中$ n $是数据点的数量。 HIDR旨在以层次结构的方式减少给定数据,以便为所有近场和Farfield互动获得$ O(1)$表示。根据HIDR,提出了线性复杂性$ \ MATHCAL {H}^2 $矩阵构造算法。与其他通用方法相比,数据驱动方法的使用能够{提高效率}和灵活的计算,而无需访问内核函数。实验表明,与在广泛的核中基于插值的方法相比,提出的数据驱动方法的记忆效率显着提高了。尽管该方法未针对任何特殊的内核进行优化,但库仑内核的基准实验表明,与几种库仑核的几种最先进的算法相比,提出的通用通用算法为层次矩阵结构提供了竞争性能。

Hierarchical matrices provide a powerful representation for significantly reducing the computational complexity associated with dense kernel matrices. For general kernel functions, interpolation-based methods are widely used for the efficient construction of hierarchical matrices. In this paper, we present a fast hierarchical data reduction (HiDR) procedure with $O(n)$ complexity for the memory-efficient construction of hierarchical matrices with nested bases where $n$ is the number of data points. HiDR aims to reduce the given data in a hierarchical way so as to obtain $O(1)$ representations for all nearfield and farfield interactions. Based on HiDR, a linear complexity $\mathcal{H}^2$ matrix construction algorithm is proposed. The use of data-driven methods enables {better efficiency than other general-purpose methods} and flexible computation without accessing the kernel function. Experiments demonstrate significantly improved memory efficiency of the proposed data-driven method compared to interpolation-based methods over a wide range of kernels. Though the method is not optimized for any special kernel, benchmark experiments for the Coulomb kernel show that the proposed general-purpose algorithm offers competitive performance for hierarchical matrix construction compared to several state-of-the-art algorithms for the Coulomb kernel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源