论文标题

通过神经符号生成模型绘制分布

Drawing out of Distribution with Neuro-Symbolic Generative Models

论文作者

Liang, Yichao, Tenenbaum, Joshua B., Le, Tuan Anh, Siddharth, N.

论文摘要

从感知输入中学习通用表达是人类智能的标志。例如,人们可以通过将这些任务描述为相同的通用基础过程的不同实例来写出数字或字符,甚至绘制涂鸦,即不同形式的笔画的组成布置。至关重要的是,学会(例如写作)学习完成一项任务意味着由于这个共同的过程,在绘画中(绘画)意味着合理的能力。我们介绍了分布(DOOD)的图形,这是一种基于中风的图形的神经符号生成模型,可以学习这种通用用途。与先前的工作相反,DOOD直接在图像上运行,不需要监督或昂贵的测试时间推断,并且使用符号笔触模型执行无监督的摊销推断,以更好地启用可解释性和概括性。我们评估了DOOD在数据和任务中概括的能力。我们首先在五个不同的数据集中执行从一个数据集(例如MNIST)到另一个数据集(例如QuickDraw)的零射击传输,并显示DOOD明显优于不同基线的DOOD。对学习表示的分析进一步凸显了采用符号中风模型的好处。然后,我们采用Omniglot挑战任务的子集,并评估其生成新的示例(无论是无条件和有条件地)的能力,并执行一声分类,表明DOOD与最新的状态相匹配。综上所述,我们证明了DOOD确实确实在数据和任务中捕获了通用表示形式,并朝着建立一般和健壮的概念学习系统迈出了进一步的一步。

Learning general-purpose representations from perceptual inputs is a hallmark of human intelligence. For example, people can write out numbers or characters, or even draw doodles, by characterizing these tasks as different instantiations of the same generic underlying process -- compositional arrangements of different forms of pen strokes. Crucially, learning to do one task, say writing, implies reasonable competence at another, say drawing, on account of this shared process. We present Drawing out of Distribution (DooD), a neuro-symbolic generative model of stroke-based drawing that can learn such general-purpose representations. In contrast to prior work, DooD operates directly on images, requires no supervision or expensive test-time inference, and performs unsupervised amortised inference with a symbolic stroke model that better enables both interpretability and generalization. We evaluate DooD on its ability to generalise across both data and tasks. We first perform zero-shot transfer from one dataset (e.g. MNIST) to another (e.g. Quickdraw), across five different datasets, and show that DooD clearly outperforms different baselines. An analysis of the learnt representations further highlights the benefits of adopting a symbolic stroke model. We then adopt a subset of the Omniglot challenge tasks, and evaluate its ability to generate new exemplars (both unconditionally and conditionally), and perform one-shot classification, showing that DooD matches the state of the art. Taken together, we demonstrate that DooD does indeed capture general-purpose representations across both data and task, and takes a further step towards building general and robust concept-learning systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源