论文标题

真实代数品种的相对形式和具有真实形式的代数模量的准标准表面的示例

Relative forms of real algebraic varieties and examples of quasi-projective surfaces with algebraic moduli of real forms

论文作者

Bot, Anna, Dubouloz, Adrien

论文摘要

我们提出了一个框架,以赋予“通过多样性参数的真实形式的真实形式的家族”的直观概念,并研究该概念的某些基本特性。作为例证,对于任何$ n \ geq 1 $,我们构建了一个准标记的真实表面的第一个示例,其相互非异晶的真实形式接纳了一个尺寸的模量,至少是$ n $的模量,该模量是由offine $ n $ space的真实点进行了参数。在这些结构上扩展,我们可以给出任何维度的准主体真实品种,其代数模量的非晶状体真实形式具有任意的积极维度。

We propose a framework to give a precise meaning to the intuitive notion of "family of real forms of a variety parametrised by a variety" and study some fundamental properties of this notion. As an illustration, for any $n \geq 1$, we construct the first example of a quasi-projective real surface whose mutually non-isomorphic real forms admit a moduli of dimension at least $n$, parametrised by the real points of an affine $n$-space. Expanding on these constructions, we can give quasi-projective real varieties of any dimension whose algebraic moduli of the non-isomorphic real forms has arbitrarily positive dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源