论文标题

$ q $ - 空间,完美的空间和连续体的基本特征

$Q$-spaces, perfect spaces and related cardinal characteristics of the continuum

论文作者

Banakh, Taras, Bazylevych, Lidiya

论文摘要

如果$ x $的每个子集都是$ x $中的$ x $,则拓扑空间$ x $称为$ q $ -space。对于$ i \ in \ {1,2,3 \} $,让$ \ mathfrak q_i $是第二个可容纳$ t_i $ -space的最小基数,这不是$ q $ -space。显然,$ \ Mathfrak Q_1 \ Le \ Mathfrak Q_2 \ Le \ Mathfrak Q_3 $。对于$ i \ in \ {1,2 \} $,我们证明$ \ mathfrak q_i $等于不完美的第二个可算出$ t_i $ -space的最小基数。另外,我们证明$ \ Mathfrak Q_3 $等于可分离空间的最小基数,这不是$ q $ -space。马丁的公理意味着$ \ mathfrak q_i = \ mathfrak c $ for All $ i \ in \ in \ {1,2,3 \} $。

A topological space $X$ is called a $Q$-space if every subset of $X$ is of type $F_σ$ in $X$. For $i\in\{1,2,3\}$ let $\mathfrak q_i$ be the smallest cardinality of a second-countable $T_i$-space which is not a $Q$-space. It is clear that $\mathfrak q_1\le\mathfrak q_2\le\mathfrak q_3$. For $i\in\{1,2\}$ we prove that $\mathfrak q_i$ is equal to the smallest cardinality of a second-countable $T_i$-space which is not perfect. Also we prove that $\mathfrak q_3$ is equal to the smallest cardinality of a submetrizable space, which is not a $Q$-space. Martin's Axiom implies that $\mathfrak q_i=\mathfrak c$ for all $i\in\{1,2,3\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源