论文标题

基于操作员推断混乱系统的非侵入性降低模型

Non-Intrusive Reduced Models based on Operator Inference for Chaotic Systems

论文作者

Almeida, João Lucas de Sousa, Pires, Arthur Cancellieri, Cid, Klaus Feine Vaz, Junior, Alberto Costa Nogueira

论文摘要

这项工作探讨了物理驱动的机器学习技术操作员推理(IMIPF),以预测混乱的动力系统状态。 OPINF提供了一种非侵入性的方法来推断缩小空间中多项式操作员的近似值,而无需访问以离散模型出现的完整订单操作员。物理系统的数据集是使用常规数值求解器生成的,然后通过主成分分析(PCA)投射到低维空间。在潜在空间中,设置了一个最小二乘问题以适合二次多项式操作员,该操作员随后在时间整合方案中使用,以便在同一空间中产生外推。求解后,将对逆PCA操作应用以重建原始空间中的外推。通过标准化的根平方误差(NRMSE)度量评估了OPINF预测的质量,从中计算有效的预测时间(VPT)。考虑混沌系统Lorenz 96和Kuramoto-Sivashinsky方程的数值实验显示出具有VPT范围的订单模型的令人鼓舞的预测能力,这些模型均超过了最先进的机器学习方法,例如返回和储存计算诸如返回和储存的新型神经网络[1],以及2.2] Neural and Markov [2] 2.

This work explores the physics-driven machine learning technique Operator Inference (OpInf) for predicting the state of chaotic dynamical systems. OpInf provides a non-intrusive approach to infer approximations of polynomial operators in reduced space without having access to the full order operators appearing in discretized models. Datasets for the physics systems are generated using conventional numerical solvers and then projected to a low-dimensional space via Principal Component Analysis (PCA). In latent space, a least-squares problem is set to fit a quadratic polynomial operator, which is subsequently employed in a time-integration scheme in order to produce extrapolations in the same space. Once solved, the inverse PCA operation is applied to reconstruct the extrapolations in the original space. The quality of the OpInf predictions is assessed via the Normalized Root Mean Squared Error (NRMSE) metric from which the Valid Prediction Time (VPT) is computed. Numerical experiments considering the chaotic systems Lorenz 96 and the Kuramoto-Sivashinsky equation show promising forecasting capabilities of the OpInf reduced order models with VPT ranges that outperform state-of-the-art machine learning methods such as backpropagation and reservoir computing recurrent neural networks [1], as well as Markov neural operators [2].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源