论文标题

RUATD共享任务2022关于俄罗斯人的人造文本检测的结果

Findings of the The RuATD Shared Task 2022 on Artificial Text Detection in Russian

论文作者

Shamardina, Tatiana, Mikhailov, Vladislav, Chernianskii, Daniil, Fenogenova, Alena, Saidov, Marat, Valeeva, Anastasiya, Shavrina, Tatiana, Smurov, Ivan, Tutubalina, Elena, Artemova, Ekaterina

论文摘要

我们介绍了俄罗斯人的人工文本检测的共同任务,该任务是2022年举行的对话评估计划的一部分。共享的任务数据集包括来自14个文本生成器的文本,即一位人类作家和13个文本生成模型,用于以下一代或多个一代或多个任务:机器翻译,拼写,拼写,文本简化,文本简化。我们还考虑了反向翻译和零发的生成方法。人写的文本是从多个领域的公开资源中收集的。共享任务由两个子任务组成:(i)确定给定文本是由人类自动生成或编写的; (ii)确定给定文本的作者。第一个任务是将其构架为二进制分类问题。第二个任务是多类分类问题。我们提供基于计数和基于BERT的基线,以及对第一个子任务的人类评估。相应地,总共向二进制和多级子任务提交了30和8个系统。大多数球队的表现都超过了基线。我们在GitHub存储库中公开发布代码库,人类评估结果和其他材料(https://github.com/dialogue-evaluation/ruatd)。

We present the shared task on artificial text detection in Russian, which is organized as a part of the Dialogue Evaluation initiative, held in 2022. The shared task dataset includes texts from 14 text generators, i.e., one human writer and 13 text generative models fine-tuned for one or more of the following generation tasks: machine translation, paraphrase generation, text summarization, text simplification. We also consider back-translation and zero-shot generation approaches. The human-written texts are collected from publicly available resources across multiple domains. The shared task consists of two sub-tasks: (i) to determine if a given text is automatically generated or written by a human; (ii) to identify the author of a given text. The first task is framed as a binary classification problem. The second task is a multi-class classification problem. We provide count-based and BERT-based baselines, along with the human evaluation on the first sub-task. A total of 30 and 8 systems have been submitted to the binary and multi-class sub-tasks, correspondingly. Most teams outperform the baselines by a wide margin. We publicly release our codebase, human evaluation results, and other materials in our GitHub repository (https://github.com/dialogue-evaluation/RuATD).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源