论文标题

部分可观测时空混沌系统的无模型预测

Beyond Opinion Mining: Summarizing Opinions of Customer Reviews

论文作者

Amplayo, Reinald Kim, Bražinskas, Arthur, Suhara, Yoshi, Wang, Xiaolan, Liu, Bing

论文摘要

客户评论对于在信息时代做出购买决策至关重要。可以自动概括此类评论,以向用户提供意见概述。在本教程中,我们介绍了意见摘要的各个方面,这些方面对研究人员和从业者有用。首先,我们将介绍任务和重大挑战。然后,我们将提出现有的意见摘要解决方案,包括神经前和神经。我们将讨论如何在无监督,几乎没有监督的政权中培训摘要。每个制度都有根源在不同的机器学习方法中,例如自动编码,可控文本生成和变异推断。最后,我们将讨论资源和评估方法,并以未来的指示结束。该三个小时的教程将对意见总结的重大进展提供全面的概述。听众将拥有对研究和实际应用有用的知识。

Customer reviews are vital for making purchasing decisions in the Information Age. Such reviews can be automatically summarized to provide the user with an overview of opinions. In this tutorial, we present various aspects of opinion summarization that are useful for researchers and practitioners. First, we will introduce the task and major challenges. Then, we will present existing opinion summarization solutions, both pre-neural and neural. We will discuss how summarizers can be trained in the unsupervised, few-shot, and supervised regimes. Each regime has roots in different machine learning methods, such as auto-encoding, controllable text generation, and variational inference. Finally, we will discuss resources and evaluation methods and conclude with the future directions. This three-hour tutorial will provide a comprehensive overview over major advances in opinion summarization. The listeners will be well-equipped with the knowledge that is both useful for research and practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源