论文标题
部分可观测时空混沌系统的无模型预测
GIN: Graph-based Interaction-aware Constraint Policy Optimization for Autonomous Driving
论文作者
论文摘要
应用强化学习来自动驾驶需要特定的挑战,这主要是由于动态变化的交通流量。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。本文提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。为了反映社交互动,我们说明了图形形式的代理的运动,并使用图形卷积网络过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环,以有效地组合这两个模块。结果,这种方法鼓励学习的控制器可以免受动态风险的侵害,并使运动预测可靠地对异常运动。在实验中,我们建立了一个导航方案,其中包括城市驾驶模拟器Carla的各种情况。与基准相比,实验显示了导航策略和运动预测的最新性能。
Applying reinforcement learning to autonomous driving entails particular challenges, primarily due to dynamically changing traffic flows. To address such challenges, it is necessary to quickly determine response strategies to the changing intentions of surrounding vehicles. This paper proposes a new policy optimization method for safe driving using graph-based interaction-aware constraints. In this framework, the motion prediction and control modules are trained simultaneously while sharing a latent representation that contains a social context. To reflect social interactions, we illustrate the movements of agents in graph form and filter the features with the graph convolution networks. This helps preserve the spatiotemporal locality of adjacent nodes. Furthermore, we create feedback loops to combine these two modules effectively. As a result, this approach encourages the learned controller to be safe from dynamic risks and renders the motion prediction robust to abnormal movements. In the experiment, we set up a navigation scenario comprising various situations with CARLA, an urban driving simulator. The experiments show state-of-the-art performance on navigation strategy and motion prediction compared to the baselines.