论文标题

影响超图中的最大化

Influence Maximization in Hypergraphs

论文作者

Xie, Ming, Zhan, Xiu-Xiu, Liu, Chuang, Zhang, Zi-Ke

论文摘要

近年来,通过为给定扩散过程选择K种子节点来最大化受影响节点的大小的影响最大化,近年来引起了极大的关注。但是,在超图中的影响最大化问题(在其中杠杆化代表两个以上节点之间的相互作用)仍然是一个空旷的问题。在本文中,我们提出了一种基于自适应学位的启发式算法,即启发式学位折扣(HDD),它迭代地选择了具有低影响重叠的节点作为种子,以解决HyperGraphs中的影响最大化问题。我们进一步扩展了从普通网络作为基准的算法,并比较了所提出的算法和基准在真实数据和合成超图上的性能。结果表明,在有效性和效率方面,HDD优于基准。此外,关于合成超图的实验表明,HDD表现出高性能,尤其是在具有异质度分布的超图中。

Influence maximization in complex networks, i.e., maximizing the size of influenced nodes via selecting K seed nodes for a given spreading process, has attracted great attention in recent years. However, the influence maximization problem in hypergraphs, in which the hyperedges are leveraged to represent the interactions among more than two nodes, is still an open question. In this paper, we propose an adaptive degree-based heuristic algorithm, i.e., Heuristic Degree Discount (HDD), which iteratively selects nodes with low influence overlap as seeds, to solve the influence maximization problem in hypergraphs. We further extend algorithms from ordinary networks as baselines and compare the performance of the proposed algorithm and baselines on both real data and synthetic hypergraphs. Results show that HDD outperforms the baselines in terms of both effectiveness and efficiency. Moreover, the experiments on synthetic hypergraphs indicate that HDD shows high performance, especially in hypergraphs with heterogeneous degree distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源