论文标题
基于深度学习架构的方法,用于微波等离子体相互作用的2D仿真
Deep Learning Architecture Based Approach For 2D-Simulation of Microwave Plasma Interaction
论文作者
论文摘要
本文介绍了一个基于卷积的神经网络(CNN)的深度学习模型,该模型的启发是从UNET启发,具有带有Skip Connections的一系列编码器和解码器单元,以模拟微波超等离子相互作用。与传输,吸收和反射有关的复杂等离子体培养基中的微波传播特性主要取决于电磁(EM)波频率和电子等离子体频率的比率以及血浆密度谱。在具有不同高斯密度曲线的等离子体介质上的平面EM波的散射($ 1 \ times 10^{17} -1 \ times 10^{22} {22} {M^{ - 3}}} $)的散射。使用基于2D-FDTD(有限差时间域)的模拟生成了与微波 - 血浆相互作用相关的训练数据。然后,经过训练的深度学习模型用于重现不同等离子体谱的1GHz入射微波炉的散射电场值,误差率小于2 \%。我们提出了一条完整的深度学习(DL)管道,以训练,验证和评估模型。我们使用各种指标(例如SSIM索引,平均百分比误差和平方误差)与从基于FDTD的良好基于FDTD的EM求解器获得的各种指标进行比较。据我们所知,这是探索基于DL的方法进行复杂微波等离子体相互作用的第一个努力。与现有的计算技术相比,这项工作中提出的深度学习技术非常快,可以用作一种新的,前瞻性和替代性的计算方法,用于在实时情况下研究微波花素相互作用。
This paper presents a convolutional neural network (CNN)-based deep learning model, inspired from UNet with series of encoder and decoder units with skip connections, for the simulation of microwave-plasma interaction. The microwave propagation characteristics in complex plasma medium pertaining to transmission, absorption and reflection primarily depends on the ratio of electromagnetic (EM) wave frequency and electron plasma frequency, and the plasma density profile. The scattering of a plane EM wave with fixed frequency (1 GHz) and amplitude incident on a plasma medium with different gaussian density profiles (in the range of $1\times 10^{17}-1\times 10^{22}{m^{-3}}$) have been considered. The training data associated with microwave-plasma interaction has been generated using 2D-FDTD (Finite Difference Time Domain) based simulations. The trained deep learning model is then used to reproduce the scattered electric field values for the 1GHz incident microwave on different plasma profiles with error margin of less than 2\%. We propose a complete deep learning (DL) based pipeline to train, validate and evaluate the model. We compare the results of the network, using various metrics like SSIM index, average percent error and mean square error, with the physical data obtained from well-established FDTD based EM solvers. To the best of our knowledge, this is the first effort towards exploring a DL based approach for the simulation of complex microwave plasma interaction. The deep learning technique proposed in this work is significantly fast as compared to the existing computational techniques, and can be used as a new, prospective and alternative computational approach for investigating microwave-plasma interaction in a real time scenario.