论文标题

具有“细胞周期”的一维三态跑步模型

A one-dimensional three-state run-and-tumble model with a `cell cycle'

论文作者

Breoni, Davide, Schwarzendahl, Fabian Jan, Blossey, Ralf, Löwen, Hartmut

论文摘要

我们研究了一个由细菌caulobacter crescentus激励的一维三态跑步模型,该模型在两个非增殖流动相和增殖久坐相位之间显示出细胞周期。我们的模型实现了两个移动状态和一个久坐状态之间的动力学转变,这些状态是根据它们的数量密度来描述的,在这些数字密度上,允许移动性在向前和向后方向上不同的运行速度。我们首先分析系统的固定状态,并计算所有细胞分布的平均值和平方分位,以及沉淀细胞的数量密度。后者在早期显示出令人惊讶的超级焊接量表〜T^3。包括移动细胞种群与沉降细胞之间的排斥性和有吸引力的相互作用,我们探索系统的稳定性,然后采用数值方法来研究完全非线性系统中的结构形成。我们发现细菌的行进波,其发生在非平衡状态图中进行了定量。

We study a one-dimensional three-state run-and-tumble model motivated by the bacterium Caulobacter crescentus which displays a cell cycle between two non-proliferation mobile phase and a proliferating sedentary phase. Our model implements kinetic transitions between the two mobile and one sedentary states described in terms of their number densities, where mobility is allowed with different running speeds in forward and backward direction. We start by analyzing the stationary states of the system and compute the mean and squared-displacements for the distribution of all cells, as well as for the number density of settled cells. The latter displays a surprising super-ballistic scaling ~t^3 at early times. Including repulsive and attractive interactions between the mobile cell populations and the settled cells, we explore the stability of the system and then employ numerical methods to study structure formation in the fully nonlinear system. We find traveling waves of bacteria, whose occurrence is quantified in a nonequilibrium state diagram.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源