论文标题

实时,恒定空间,恒定的随机验证器

Real-Time, Constant-Space, Constant-Randomness Verifiers

论文作者

Dolu, Özdeniz, Ersoy, Nevzat, Gezer, M. Utkan, Say, A. C. Cem

论文摘要

我们研究具有会员证明的语言类别,这些语言可以通过实时有限状态的机器仅使用恒定数量的随机位来验证,无论其输入的大小如何。由于对验证者的任何进一步限制都将排除非规范语言的验证,因此这是最紧张的计算预算,可以检查外部提供的证据以具有有意义的使用。我们表明,通过两头单向确定性有限自动机识别的所有语言都有这样的会员证明。对于任何$ k> 0 $,存在任何$ k $ - 头单向无确定的有限自动机无法识别的语言,但是从这个意义上讲,这些语言仍然可以进行实时验证。在这些限制中也可以证明,任何单向多头确定性有限自动机无法识别的非临时粒子集。

We study the class of languages that have membership proofs which can be verified by real-time finite-state machines using only a constant number of random bits, regardless of the size of their inputs. Since any further restriction on the verifiers would preclude the verification of nonregular languages, this is the tightest computational budget which allows the checking of externally provided proofs to have meaningful use. We show that all languages that can be recognized by two-head one-way deterministic finite automata have such membership proofs. For any $k>0$, there exist languages that cannot be recognized by any $k$-head one-way nondeterministic finite automaton, but that are nonetheless real-time verifiable in this sense. The set of nonpalindromes, which cannot be recognized by any one-way multihead deterministic finite automaton, is also demonstrated to be verifiable within these restrictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源