论文标题

通过线性偏振光的反向法拉第效应

An inverse Faraday effect through linear polarized light

论文作者

Yang, Xingyu, Mou, Ye, Zapata, Homero, Reynier, Benoît, Gallas, Bruno, Mivelle, Mathieu

论文摘要

Faraday逆效应(IFE)仅允许仅通过光激发产生磁场。自从60年代的发现以来,人们认为只有椭圆形或圆形极化才能通过这种磁光现象来磁物质。在这里,我们通过光的线性极化演示了IFE的产生。这种新的物理概念是由于等离子纳米 - 安滕纳对光的局部操纵而产生的。我们证明,在线性极化激发的金纳米棒通过IFE在光的入射极化不平行于杆的长轴时会产生非零的磁场。我们表明,这种不对称产生了局部非散发自旋密度(局部椭圆极化状态)的热点,从而引入了超圆形光的概念,从而允许这种磁化。此外,通过改变入射线性极化的角度相对于纳米 - 安滕纳的角度,我们证明了磁场方向的按需翻转。最后,该线性IFE产生的固定磁场比金纳米颗粒强25倍于通过圆形极化和经典IFE激发时产生的固定磁场。如今,通过在等离激元纳米结构中IFE创建固定磁场是唯一允许在纳米级创建超短而强烈的磁场脉冲的技术。因此,它在对磁性域的超快控制中的应用不仅在数据存储技术中,而且在诸如磁陷阱,磁空,磁性圆形二分法等研究领域的应用中,以旋转控制,自旋进动,旋转电流和自旋波。

The inverse Faraday effect (IFE) allows the generation of magnetic fields by optical excitation only. Since its discovery in the 60s, it was believed that only an elliptical or circular polarization could magnetize matter by this magneto-optical phenomenon. Here, we demonstrate the generation of an IFE via a linear polarization of light. This new physical concept results from the local manipulation of light by a plasmonic nano-antenna. We demonstrate that a gold nanorod excited by a linear polarization generates a non-zero magnetic field by IFE when the incident polarization of the light is not parallel to the long axis of the rod. We show that this dissymmetry generates hot spots of local non-vanishing spin densities (local elliptical polarization state), introducing the concept of super circular light, allowing this magnetization. Moreover, by varying the angle of the incident linear polarization with respect to the nano-antenna, we demonstrate the on-demand flipping of the magnetic field orientation. Finally, this linear IFE generates a stationary magnetic field 25 times stronger than what a gold nanoparticle produces when excited by a circular polarization and via a classical IFE. The creation of stationary magnetic fields by IFE in a plasmonic nanostructure is nowadays the only technique allowing the creation of ultra-short, intense magnetic field pulses at the nanoscale. Thus, it finds applications in the ultrafast control of magnetic domains with applications not only in data storage technologies but also in research fields such as magnetic trapping, magnetic skyrmion, magnetic circular dichroism, to spin control, spin precession, spin currents, and spin waves, among others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源