论文标题

将知识从对象分类蒸馏到美学评估

Distilling Knowledge from Object Classification to Aesthetics Assessment

论文作者

Hou, Jingwen, Ding, Henghui, Lin, Weisi, Liu, Weide, Fang, Yuming

论文摘要

在这项工作中,我们指出,图像美学评估的主要困境(IAA)来自美学标签的抽象性质。也就是说,各种不同的内容可能对应于相同的美学标签。一方面,在推断过程中,IAA模型需要将各种不同的内容与相同的美学标签联系起来。另一方面,在训练时,IAA模型很难学会仅通过审美标签的监督来区分不同的内容,因为美学标签与任何特定内容并不直接相关。为了解决这一难题,我们建议将有关语义模式的知识提炼为从多个预训练的对象分类(POC)模型到IAA模型的大量图像内容。期望多个POC模型的组合可以为各种图像内容提供足够的知识,因此IAA模型可以更容易地学习将各种不同内容与有限数量的美学标签联系起来。通过监督具有蒸馏知识的端到端单背骨IAA模型,与仅使用地面真相美学标签训练的版本相比,SRCC的IAA模型的性能在SRCC中显着提高了4.8%。在特定类别的图像上,该方法带来的SRCC改进可以达到高达7.2%。同伴比较还表明,我们的方法的表现优于先前的10种IAA方法。

In this work, we point out that the major dilemma of image aesthetics assessment (IAA) comes from the abstract nature of aesthetic labels. That is, a vast variety of distinct contents can correspond to the same aesthetic label. On the one hand, during inference, the IAA model is required to relate various distinct contents to the same aesthetic label. On the other hand, when training, it would be hard for the IAA model to learn to distinguish different contents merely with the supervision from aesthetic labels, since aesthetic labels are not directly related to any specific content. To deal with this dilemma, we propose to distill knowledge on semantic patterns for a vast variety of image contents from multiple pre-trained object classification (POC) models to an IAA model. Expecting the combination of multiple POC models can provide sufficient knowledge on various image contents, the IAA model can easier learn to relate various distinct contents to a limited number of aesthetic labels. By supervising an end-to-end single-backbone IAA model with the distilled knowledge, the performance of the IAA model is significantly improved by 4.8% in SRCC compared to the version trained only with ground-truth aesthetic labels. On specific categories of images, the SRCC improvement brought by the proposed method can achieve up to 7.2%. Peer comparison also shows that our method outperforms 10 previous IAA methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源