论文标题

树切宽的算法应用

Algorithmic Applications of Tree-Cut Width

论文作者

Ganian, Robert, Kim, Eun Jung, Szeider, Stefan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The recently introduced graph parameter tree-cut width plays a similar role with respect to immersions as the graph parameter treewidth plays with respect to minors. In this paper, we provide the first algorithmic applications of tree-cut width to hard combinatorial problems. Tree-cut width is known to be lower-bounded by a function of treewidth, but it can be much larger and hence has the potential to facilitate the efficient solution of problems that are not known to be fixed-parameter tractable (FPT) when parameterized by treewidth. We introduce the notion of nice tree-cut decompositions and provide FPT algorithms for the showcase problems Capacitated Vertex Cover, Capacitated Dominating Set, and Imbalance parameterized by the tree-cut width of an input graph. On the other hand, we show that List Coloring, Precoloring Extension, and Boolean CSP (the latter parameterized by the tree-cut width of the incidence graph) are W[1]-hard and hence unlikely to be fixed-parameter tractable when parameterized by tree-cut width.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源