论文标题

部分可观测时空混沌系统的无模型预测

Hybrid photometric redshifts for sources in the COSMOS and XMM-LSS fields

论文作者

Hatfield, P. W., Jarvis, M. J., Adams, N., Bowler, R. A. A., Häußler, B., Duncan, K. J.

论文摘要

在本文中,我们向XMM-LSS和COSMOS领域的270万个星系提供了光度红移,这些星系具有来自Vista和HyperSuprimecam的丰富光学和近红外数据。模板拟合(使用Lephare中的星系和活跃的银河系核模板)和机器学习(使用GPZ)方法都在KS波段中选择的源的光圈光度上运行。然后,使用层次贝叶斯模型合并所得的预测,以产生共识的光度红移点估计和概率分布函数,以分别胜过每个方法。我们的观点估计值的均方根误差约为0.08-0.09,与光谱红移相比,离群分数约为3-4%。我们还将结果与COSMOS20光度红移进行了比较,其中包含较少的来源,但可以访问较大的频带和更大的波长覆盖范围,发现可以实现可比较的Photo-Z质量(对于可以进行直接比较的明亮和中间的亮度源,可以进行直接比较)。对于这些深度多方面的多方程度多波长字段,我们产生的红移代表了最准确的光度红移(对于目录如此之大)。

In this paper we present photometric redshifts for 2.7 million galaxies in the XMM-LSS and COSMOS fields, both with rich optical and near-infrared data from VISTA and HyperSuprimeCam. Both template fitting (using galaxy and Active Galactic Nuclei templates within LePhare) and machine learning (using GPz) methods are run on the aperture photometry of sources selected in the Ks-band. The resulting predictions are then combined using a Hierarchical Bayesian model, to produce consensus photometric redshift point estimates and probability distribution functions that outperform each method individually. Our point estimates have a root mean square error of ~0.08-0.09, and an outlier fraction of ~3-4 percent when compared to spectroscopic redshifts. We also compare our results to the COSMOS2020 photometric redshifts, which contains fewer sources, but had access to a larger number of bands and greater wavelength coverage, finding that comparable photo-z quality can be achieved (for bright and intermediate luminosity sources where a direct comparison can be made). Our resulting redshifts represent the most accurate set of photometric redshifts (for a catalogue this large) for these deep multi-square degree multi-wavelength fields to date.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源