论文标题

超级计算机反对重力与曲率和扭转

Supercomputers against strong coupling in gravity with curvature and torsion

论文作者

Barker, W. E. V.

论文摘要

许多重力理论都被强烈耦合模式所破坏:哈密顿分析的高计算成本会阻碍这些模式的识别。提出了用于曲率和扭转理论的哈密顿约束算法的计算机代数实施。这些非利马尼亚人或庞加纳仪理论臭名昭著地遭受了强效的损失。该实施形成了Mathematica中XACT张量操纵套件的软件包(Hamiltonian Gauge Gravity测量师-HIGGS)。可以并行评估泊松支架,这意味着可以在硅和大规模上进行哈密顿分析。因此,希格斯旨在通过高性能计算资源(群集和超级计算机)来调查整个拉格朗日空间。为了证明这一点,调查了“非法”庞加莱仪表理论的空间,其中均匀的平等/奇数矢量或奇偶校验量张量扭转粒子伴随着通常的graverton。该调查跨越了远程平行风格的乘数字段的可能配置,这些乘数可能用于杀死强耦合模式,并在随后的工作中分析结果。所有理论的已知主要和次要约束之间的所有括号均可用于将来的研究。还为使用Higgs(在台式计算机上)来运行Dirac -Bergmann算法(例如Einstein -Cartan理论及其最小扩展)来运行Dirac -Bergmann算法。

Many theories of gravity are spoiled by strongly coupled modes: the high computational cost of Hamiltonian analysis can obstruct the identification of these modes. A computer algebra implementation of the Hamiltonian constraint algorithm for curvature and torsion theories is presented. These non-Riemannian or Poincaré gauge theories suffer notoriously from strong coupling. The implementation forms a package (the `Hamiltonian Gauge Gravity Surveyor' - HiGGS) for the xAct tensor manipulation suite in Mathematica. Poisson brackets can be evaluated in parallel, meaning that Hamiltonian analysis can be done on silicon, and at scale. Accordingly HiGGS is designed to survey the whole Lagrangian space with high-performance computing resources (clusters and supercomputers). To demonstrate this, the space of `outlawed' Poincaré gauge theories is surveyed, in which a massive parity-even/odd vector or parity-odd tensor torsion particle accompanies the usual graviton. The survey spans possible configurations of teleparallel-style multiplier fields which might be used to kill-off the strongly coupled modes, with the results to be analysed in subsequent work. All brackets between the known primary and secondary constraints of all theories are made available for future study. Demonstrations are also given for using HiGGS - on a desktop computer - to run the Dirac-Bergmann algorithm on specific theories, such as Einstein-Cartan theory and its minimal extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源