论文标题

矩阵乘法方案的正常形式

A Normal Form for Matrix Multiplication Schemes

论文作者

Kauers, Manuel, Moosbauer, Jakob

论文摘要

小矩阵精确乘法的方案具有大对称组。该组定义了乘法方案集的等价关系。有算法可以决定两个方案是否等效。但是,对于大量方案,成对等效检查变得笨拙。在本文中,我们提出了一种算法来计算矩阵乘法方案的正常形式。这使我们能够有效地确定更多计划的成对等效性。

Schemes for exact multiplication of small matrices have a large symmetry group. This group defines an equivalence relation on the set of multiplication schemes. There are algorithms to decide whether two schemes are equivalent. However, for a large number of schemes a pairwise equivalence check becomes cumbersome. In this paper we propose an algorithm to compute a normal form of matrix multiplication schemes. This allows us to decide pairwise equivalence of a larger number of schemes efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源