论文标题

移动图上的隐私性流行病学建模

Privacy-Preserving Epidemiological Modeling on Mobile Graphs

论文作者

Günther, Daniel, Holz, Marco, Judkewitz, Benjamin, Möllering, Helen, Pinkas, Benny, Schneider, Thomas, Suresh, Ajith

论文摘要

最新的大流行COVID-19带领政府在全球范围内采取各种遏制措施来控制其传播,例如接触跟踪,社会距离法规和宵禁。流行病学模拟通常用于评估这些政策的影响。不幸的是,相关的经验数据的稀缺性(特别是详细的社会联系图)阻碍了他们的预测准确性。由于此数据本质上是隐私至关重要的,因此迫切需要一种方法来对现实世界触点图进行强大的流行病学模拟,而无需披露任何敏感信息。 在这项工作中,我们提出了Pripple,这是一种保护隐私的流行病学建模框架,可在人群的真实接触图上为传染病提供标准模型,同时将所有联系信息保留在参与者的设备上。作为独立兴趣的一个组成部分,我们提出了PIR-SUM,这是私人信息检索的新颖扩展,可从数据库中删除元素总和。我们的协议得到了概念验证实施的支持,这表明了7分钟内完成的2周模拟,每位参与者的交流少于50 kb。

The latest pandemic COVID-19 brought governments worldwide to use various containment measures to control its spread, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented. Unfortunately, the scarcity of relevant empirical data, specifically detailed social contact graphs, hampered their predictive accuracy. As this data is inherently privacy-critical, a method is urgently needed to perform powerful epidemiological simulations on real-world contact graphs without disclosing any sensitive~information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework enabling standard models for infectious disease on a population's real contact graph while keeping all contact information locally on the participants' devices. As a building block of independent interest, we present PIR-SUM, a novel extension to private information retrieval for secure download of element sums from a database. Our protocols are supported by a proof-of-concept implementation, demonstrating a 2-week simulation over half a million participants completed in 7 minutes, with each participant communicating less than 50 KB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源