论文标题
与周期扩张的间歇性
Wielding Intermittency with Cycle Expansions
论文作者
论文摘要
随着周期性轨道理论在计算具有间歇性动力学系统的可观察到的平均值方面的努力很大,我们提出了一个方案,以与周期扩展和扰动理论进行配合,以便我们可以处理间歇性系统并更准确地计算平均值。周期性轨道理论假设最短的不稳定周期轨道构建了系统的框架,并提供了基于它们的动力学数量的周期扩展,而扰动理论可以局部分析动态系统的结构。可以通过将两种技术组合在一起,可以更精确地获得动力学平均值。基于边缘轨道附近的集成性以及远离间歇性系统奇异性的一部分的双曲线,本文的主要思想是修改间歇地图并保持原始地图产生的自然措施。我们通过泰勒膨胀获得了奇异性附近的自然措施,周期性轨道理论捕获了相空间其他部分的自然度量。我们在具有单个奇点的一维间歇地图上尝试此方法,并实现了更精确的结果。
As periodic orbit theory works badly on computing the observable averages of dynamical systems with intermittency, we propose a scheme to cooperate with cycle expansion and perturbation theory so that we can deal with intermittent systems and compute the averages more precisely. Periodic orbit theory assumes that the shortest unstable periodic orbits build the framework of the system and provides cycles expansion to compute dynamical quantities based on them, while the perturbation theory can locally analyze the structure of dynamical systems. The dynamical averages may be obtained more precisely by combining the two techniques together. Based on the integrability near the marginal orbits and the hyperbolicity in the part away from the singularities in intermittent systems, the chief idea of this paper is to revise intermittent maps and maintain the natural measure produced by the original maps. We get the natural measure near the singularity through the Taylor expansions and periodic orbit theory captures the natural measure in the other parts of the phase space. We try this method on 1-dimensional intermittent maps with single singularity, and more precise results are achieved.