论文标题

在离散图形模型的量子电路上

On Quantum Circuits for Discrete Graphical Models

论文作者

Piatkowski, Nico, Zoufal, Christa

论文摘要

图形模型是描述结构化高维概率分布的有用工具。从图形模型中生成无偏见和独立样本的有效算法的开发仍然是一个活跃的研究主题。描述离散变量统计数据的图形模型的采样是一个特别具有挑战性的问题,在高维的存在下是棘手的。在这项工作中,我们提供了第一种方法,该方法允许人们从具有量子电路的一般离散因子模型中生成公正和独立的样本。我们的方法与多体相互作用兼容,其成功概率不取决于变量的数量。为此,我们确定了图形模型的新颖嵌入到统一操作员中,并对由此产生的量子状态提供了严格的保证。此外,我们证明了一个统一的Hammersley-Clifford定理 - 表明我们的量子嵌入在基本条件独立结构的集团上分解。重要的是,量子嵌入允许通过最新的杂种量子古典方法进行最大的似然学习以及最大的后验近似。最后,可以在当前量子处理器上实现所提出的量子方法。使用量子模拟以及实际量子硬件的实验表明,我们的方法可以在量子计算机上进行采样和参数学习。

Graphical models are useful tools for describing structured high-dimensional probability distributions. Development of efficient algorithms for generating unbiased and independent samples from graphical models remains an active research topic. Sampling from graphical models that describe the statistics of discrete variables is a particularly challenging problem, which is intractable in the presence of high dimensions. In this work, we provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models with a quantum circuit. Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables. To this end, we identify a novel embedding of the graphical model into unitary operators and provide rigorous guarantees on the resulting quantum state. Moreover, we prove a unitary Hammersley-Clifford theorem -- showing that our quantum embedding factorizes over the cliques of the underlying conditional independence structure. Importantly, the quantum embedding allows for maximum likelihood learning as well as maximum a posteriori state approximation via state-of-the-art hybrid quantum-classical methods. Finally, the proposed quantum method can be implemented on current quantum processors. Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源