论文标题

访问辅助信息的优化

Optimization with Access to Auxiliary Information

论文作者

Chayti, El Mahdi, Karimireddy, Sai Praneeth

论文摘要

我们调查了最小化目标功能$ f $的基本优化问题,该问题的计算梯度昂贵或有限的可用性,允许访问某些辅助侧功能$ H $,其梯度便宜或更可用。这种表述捕获了许多实际相关性的设置,例如i)在SGD中重新使用批次,ii)转移学习,iii)联合学习,iv)iv)训练压缩模型/辍学等。我们建议在所有这些设置中适用的两种通用新算法。我们还证明,在目标和侧面信息之间的Hessian相似性假设下,我们可以从该框架中受益。当这种相似性度量很小时,将获得益处。当辅助噪声与目标函数相关时,我们还显示了随机性的潜在益处。

We investigate the fundamental optimization question of minimizing a target function $f$, whose gradients are expensive to compute or have limited availability, given access to some auxiliary side function $h$ whose gradients are cheap or more available. This formulation captures many settings of practical relevance, such as i) re-using batches in SGD, ii) transfer learning, iii) federated learning, iv) training with compressed models/dropout, Et cetera. We propose two generic new algorithms that apply in all these settings; we also prove that we can benefit from this framework under the Hessian similarity assumption between the target and side information. A benefit is obtained when this similarity measure is small; we also show a potential benefit from stochasticity when the auxiliary noise is correlated with that of the target function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源