论文标题
适应失败的标签:通过主动选择的点监督跨域语义分割
Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with Point Supervision via Active Selection
论文作者
论文摘要
专门针对语义细分的培训模型需要大量的像素注释数据。由于其昂贵的性质,这些注释可能无法用于手头的任务。为了减轻这个问题,无监督的域适应方法旨在使标记的源和未标记的目标数据之间的特征分布对齐。尽管这些策略导致了明显的改进,但它们的有效性仍然有限。为了更有效地指导域适应任务,以前的工作试图在目标数据中稀疏的单像素注释的形式中包括人类的相互作用。在这项工作中,我们提出了一个新的域适应框架,用于通过主动选择带注释点的语义分割。首先,我们对模型进行了无监督的域适应。通过这种适应,我们使用基于熵的不确定性测量来进行目标点选择。最后,为了最大程度地减少域间隙,我们提出了一个使用人类注释者注释的这些目标点的域适应框架。基准数据集的实验结果显示了我们对现有无监督域适应方法的有效性。建议管道是通用的,可以作为现有域适应策略的额外模块。
Training models dedicated to semantic segmentation requires a large amount of pixel-wise annotated data. Due to their costly nature, these annotations might not be available for the task at hand. To alleviate this problem, unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data. While these strategies lead to noticeable improvements, their effectiveness remains limited. To guide the domain adaptation task more efficiently, previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data. In this work, we propose a new domain adaptation framework for semantic segmentation with annotated points via active selection. First, we conduct an unsupervised domain adaptation of the model; from this adaptation, we use an entropy-based uncertainty measurement for target points selection. Finally, to minimize the domain gap, we propose a domain adaptation framework utilizing these target points annotated by human annotators. Experimental results on benchmark datasets show the effectiveness of our methods against existing unsupervised domain adaptation approaches. The propose pipeline is generic and can be included as an extra module to existing domain adaptation strategies.