论文标题

参数分位数自回旋运动平均模型,其外源性术语适用于沃尔玛销售数据

Parametric quantile autoregressive moving average models with exogenous terms applied to Walmart sales data

论文作者

Dasilva, Alan, Saulo, Helton, Vila, Roberto, Fiorucci, Jose A., Pal, Suvra

论文摘要

文献中广泛使用了具有外源项(ARMAX)的参数自回旋运动平均模型(ARMAX)。通常,这些模型考虑有条件的均值或中位动力学,这限制了分析。在本文中,我们基于对数对称分布引入了一类分位数ARMAX模型。该类由分位数和分散参数索引。它不仅适合建模双峰和/或轻/重/重尾分布式数据的可能性,而且还可以适应异性范围。我们使用条件最大似然法估计模型参数。此外,我们进行了一项广泛的蒙特卡洛模拟研究,以评估提出的模型的性能以及检索真实参数值的估计方法。最后,提出的模型类别和估算方法应用于竞争“ M5预测 - 准确性”的数据集,该数据集与几种沃尔玛产品的日常销售历史相对应。结果表明,在模型拟合和预测方面,提出的对数对称分位数ARMAX模型具有良好的性能。

Parametric autoregressive moving average models with exogenous terms (ARMAX) have been widely used in the literature. Usually, these models consider a conditional mean or median dynamics, which limits the analysis. In this paper, we introduce a class of quantile ARMAX models based on log-symmetric distributions. This class is indexed by quantile and dispersion parameters. It not only accommodates the possibility to model bimodal and/or light/heavy-tailed distributed data but also accommodates heteroscedasticity. We estimate the model parameters by using the conditional maximum likelihood method. Furthermore, we carry out an extensive Monte Carlo simulation study to evaluate the performance of the proposed models and the estimation method in retrieving the true parameter values. Finally, the proposed class of models and the estimation method are applied to a dataset on the competition "M5 Forecasting - Accuracy" that corresponds to the daily sales history of several Walmart products. The results indicate that the proposed log-symmetric quantile ARMAX models have good performance in terms of model fitting and forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源