论文标题
Haiman猜想的最新消息
An update on Haiman's conjectures
论文作者
论文摘要
我们回顾了海曼对Hecke代数kazdhan-Lusztig基础元素的关系与对称群体之间的关系的猜想。猜想断言,出于角色评估的目的,任何kazhdan-lusztig基元元素都可以降低到最简单的可能的总和(与所谓的共同排列相关的总和)。当基本元素与平稳置换相关联时,我们能够给出此猜想的几何证明。另一方面,如果排列是单数的,我们会提供反例。
We revisit Haiman's conjecture on the relations between characters of Kazdhan-Lusztig basis elements of the Hecke algebra over the symmetric group. The conjecture asserts that, for purposes of character evaluation, any Kazhdan-Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.