论文标题
部分可观测时空混沌系统的无模型预测
Generalized Gelfand-Dikii equation for fermionic Schwinger pair production
论文作者
论文摘要
使用各种形式主义,可以将纯粹与时间相关的电场中的Schwinger对创建减少为有效的量子机械问题。在这里,我们开发了一种基于标量QED的Gelfand-Dikii方程,以及对Spinor QED的该方程的概括。从这个角度来看,我们讨论了许多可解决的特殊情况。在先前的工作中,两个作者为标量案例展示了如何使用KDV方程的众所周知的孤子解决方案来构建PöschlTeller,例如电场,这些电场不会在某些固定但任意的动量下构成创建。在这里,我们提供了数值证据,表明该结构仅通过更改参数来适应费米子情况。
Schwinger pair creation in a purely time-dependent electric field can be reduced to an effective quantum mechanical problem using a variety of formalisms. Here we develop an approach based on the Gelfand-Dikii equation for scalar QED, and on a generalization of that equation for spinor QED. We discuss a number of solvable special cases from this point of view. In previous work, two of the authors had shown for the scalar case how to use the well-known solitonic solutions of the KdV equation to construct Pöschl-Teller like electric fields that do not pair create at some fixed but arbitrary momentum. Here, we present numerical evidence that this construction can be adapted to the fermionic case by a mere change of parameters.