论文标题

使用卷积自动编码器模型和Interval-2 Type-2模糊回归的RS-FMRI模态中精神分裂症和注意力缺陷多动障碍的自动诊断

Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression

论文作者

Shoeibi, Afshin, Ghassemi, Navid, Khodatars, Marjane, Moridian, Parisa, Khosravi, Abbas, Zare, Assef, Gorriz, Juan M., Chale-Chale, Amir Hossein, Khadem, Ali, Acharya, U. Rajendra

论文摘要

如今,全世界许多人都患有脑部疾病,他们的健康处于危险之中。到目前为止,已经提出了许多用于诊断精神分裂症(SZ)和注意力缺陷多动障碍(ADHD)的方法,其中功能性磁共振成像(fMRI)模态在医生中被称为流行方法。本文使用新的深度学习方法介绍了一种静止状态fMRI(RS-FMRI)模态的SZ和ADHD智能检测方法。加州大学洛杉矶分校的数据集包含SZ和ADHD患者的RS-FMRI模式,已用于实验。 FMRIB软件库工具箱首先在RS-FMRI数据上进行了预处理。然后,使用提出的层数的卷积自动编码器模型用于从RS-FMRI数据中提取功能。在分类步骤中,引入了一种新的模糊方法,称为Interval-2模糊回归(IT2FR),然后通过遗传算法,粒子群优化和灰狼优化(GWO)技术进行了优化。此外,将IT2FR方法的结果与多层感知器,K-Nearest邻居,支持向量机,随机森林和决策树以及自适应神经模糊的推理系统方法进行了比较。实验结果表明,与其他分类器方法相比,具有GWO优化算法的IT2FR方法已获得令人满意的结果。最后,提出的分类技术能够提供72.71%的精度。

Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源