论文标题

反射图,圆润曲率,有效直径和刚度

Reflective Graphs, Ollivier curvature, effective diameter, and rigidity

论文作者

Münch, Florentin

论文摘要

我们给出一个离散的引擎盖Myers型定理,以实现有效直径,假设呈阳性曲率。我们证明,当且仅当图形是鸡尾酒会图,约翰逊图,一半的立方体,schläfli图,棉图图或带有相同易感曲率的上述图的笛卡尔产物时,我们才能实现这种直径结合。作为证明的关键步骤,我们将反射图的概念介绍为图形,以使任何两个邻居都存在某种自身隔离的自动形态,将一个邻居映射到另一个邻居。我们将这些图表分类为前面提到的图形的任意笛卡尔产品。

We give a discrete Bonnet Myers type theorem for the effective diameter assuming positive Ollivier curvature. We prove that this diameter bound is attained if and only if the graph is a cocktail party graph, a Johnson graph, a halved cube, a Schläfli graph, a Gosset graph, or a cartesian product of the mentioned graphs with same Ollivier curvature. As a key step in the proof, we introduce the notion of reflective graphs as graphs such that for any two neighbors there exists a certain self-inverse automorphism mapping one neighbor to another. We classify these graphs as arbitrary cartesian products of the graphs mentioned before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源