论文标题
障碍和点间隙拓扑的相互作用:手性模式,本地化和非热式安德森皮肤效应
Interplay of Disorder and Point-Gap Topology: Chiral Modes, Localization and Non-Hermitian Anderson Skin Effect in One Dimension
论文作者
论文摘要
非热系统中受对称保护的光谱拓扑具有有趣的表现,例如动态异常的手性电流和皮肤效应。我们在光谱拓扑模型中研究对称性与混乱之间的相互作用 - 非核心Su-Schrieffer-Heeger模型。我们从数值上研究了障碍在现场和非转录术中的影响。使用真实空间的绕组数,我们研究了障碍在周期性边界条件下对频谱拓扑和异常手性模式的影响。我们发现了手性电流在疾病下的显着鲁棒性。手性电流的值保留了干净的系统值,独立于无序强度,并完全由没有对称性的A类的真实空间绕组数和AIII类(具有子晶格对称性)。在具有$ pt $ -smmetric现场收益和损失条款的类$ d^\匕首$中,我们发现杂项平均电流并不强大,而绕组数量稳健。我们使用逆参与率和状态的局部密度研究定位物理学。随着疾病强度的增加,出现了具有有限绕组的行动性边缘阶段。绕组数的突然消失标志着从部分定位到完全局部阶段的过渡。在开放的边界条件下,我们通过皮肤效应的皮肤效应 - 非皮肤效应阶段观察到一系列过渡。此外,我们研究了不同的对称类别的非热式安德森皮肤效应(NHASE),其中没有皮肤效应的系统在中间疾病值中会产生疾病驱动的皮肤效应。值得注意的是,在不同类别的NHASE存在时,实际空间绕组数字仅在所有对称对称性时才显示出与之直接的对应关系。
Symmetry-protected spectral topology in non-Hermitian systems has interesting manifestations such as dynamically anomalous chiral currents and skin effect. We study the interplay between symmetries and disorder in a paradigmatic model for spectral topology - the non-reciprocal Su-Schrieffer-Heeger model. We numerically study the effect of disorder in on-site and non-reciprocal hopping terms. Using a real-space winding number, we investigate the impact of disorder on the spectral topology and the anomalous chiral modes under periodic boundary conditions. We discover a remarkable robustness of chiral current under disorder. The value of the chiral current retains the clean system value, is independent of disorder strength and is tracked completely by the real-space winding number for class A which has no symmetries, and class AIII, which has a sub-lattice symmetry. In class $D^\dagger$, which has $PT$-symmetric on-site gain and loss terms, we find that the disorder-averaged current is not robust while the winding number is robust. We study the localization physics using the inverse participation ratio and local density of states. As the disorder strength is increased, a mobility-edge phase with a finite winding appears. The abrupt vanishing of the winding number marks a transition from a partially localized to a fully localized phase. Under open boundary conditions, we observe a series of transitions through skin effect-partial skin effect-no skin effect phases. Further, we study the non-Hermitian Anderson skin effect (NHASE) for different symmetry classes, where the system without skin effect develops a disorder-driven skin effect at intermediate disorder values. Remarkably while NHASE is present for different classes, the real-space winding number shows a direct correspondence with it only when all symmetries are broken.