论文标题

云中预测自动化的元加强学习方法

A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud

论文作者

Xue, Siqiao, Qu, Chao, Shi, Xiaoming, Liao, Cong, Zhu, Shiyi, Tan, Xiaoyu, Ma, Lintao, Wang, Shiyu, Wang, Shijun, Hu, Yun, Lei, Lei, Zheng, Yangfei, Li, Jianguo, Zhang, James

论文摘要

预测性自动化(通过工作量预测自动升级)是一种重要的机制,它可以根据云中的工作负载需求进行自主调整计算资源的自主调整。在最近的作品中,引入了强化学习(RL),是一种有前途的方法,用于学习资源管理政策,以指导在动态和不确定的云环境下进行缩放措施。但是,RL方法在转向预测性自动启动方面面临以下挑战,例如在决策中缺乏准确性,效率低下的采样和工作负载模式的显着差异,这可能会导致策略在测试时失败。为此,我们提出了一种端到端的基于元模型的RL算法,旨在最佳地分配资源,以维持稳定的CPU利用率,该级别结合了一个专门设计的深层周期性工作负载预测模型,作为输入,并嵌入了新的过程,以指导在许多应用程序中的最佳扩展操作,以学习云中的许多应用程序。我们的算法不仅确保了缩放策略的可预测性和准确性,而且还可以使缩放决策能够以较高的样本效率适应不断变化的工作负载。与现有算法相比,我们的方法已取得了重大的性能提高,并已在Alipay在线部署,支持了世界领先的支付平台应用程序的自动化。

Predictive autoscaling (autoscaling with workload forecasting) is an important mechanism that supports autonomous adjustment of computing resources in accordance with fluctuating workload demands in the Cloud. In recent works, Reinforcement Learning (RL) has been introduced as a promising approach to learn the resource management policies to guide the scaling actions under the dynamic and uncertain cloud environment. However, RL methods face the following challenges in steering predictive autoscaling, such as lack of accuracy in decision-making, inefficient sampling and significant variability in workload patterns that may cause policies to fail at test time. To this end, we propose an end-to-end predictive meta model-based RL algorithm, aiming to optimally allocate resource to maintain a stable CPU utilization level, which incorporates a specially-designed deep periodic workload prediction model as the input and embeds the Neural Process to guide the learning of the optimal scaling actions over numerous application services in the Cloud. Our algorithm not only ensures the predictability and accuracy of the scaling strategy, but also enables the scaling decisions to adapt to the changing workloads with high sample efficiency. Our method has achieved significant performance improvement compared to the existing algorithms and has been deployed online at Alipay, supporting the autoscaling of applications for the world-leading payment platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源