论文标题

混合方法 - 卷积神经网络和期望最大化算法 - 用于整形术的高光谱图像

The hybrid approach -- Convolutional Neural Networks and Expectation Maximization Algorithm -- for Tomographic Reconstruction of Hyperspectral Images

论文作者

Ahlebæk, Mads J., Peters, Mads S., Huang, Wei-Chih, Frandsen, Mads T., Eriksen, René L., Jørgensen, Bjarke

论文摘要

我们提出了一种简单但新颖的混合方法,用于从计算机断层扫描成像光谱法(CTIS)图像中进行高光谱数据立方体重建,该图像依次将神经网络和迭代期望最大化(EM)算法结合在一起。我们训练和测试该方法重建$ 100 \ times100 \ times25 $和$ 100 \ times100 \ times100 $ voxels的数据立方体的能力,该数据群,从我们的CTIS模拟器生成的模拟CTIS图像,对应于25和100频谱通道。混合方法利用卷积神经网络(CNN)的固有强度在噪声及其产生一致重建的能力方面,并利用EM算法在未经训练的情况下推广到任何对象的光谱图像的能力。与CNN和EM相比,混合方法的性能更好(包括在CNN培训中),并且在25频道和100个通道案例中都看不见(包括在CNN培训中排除)。对于25个光谱通道,就均方误差而言,从CNN到混合模型(CNN + EM)的改进在14-26%之间。对于100个频谱渠道,在19-40%之间的改善是在训练期间未暴露的,在未见数据中的最大改善为40%。

We present a simple but novel hybrid approach to hyperspectral data cube reconstruction from computed tomography imaging spectrometry (CTIS) images that sequentially combines neural networks and the iterative Expectation Maximization (EM) algorithm. We train and test the ability of the method to reconstruct data cubes of $100\times100\times25$ and $100\times100\times100$ voxels, corresponding to 25 and 100 spectral channels, from simulated CTIS images generated by our CTIS simulator. The hybrid approach utilizes the inherent strength of the Convolutional Neural Network (CNN) with regard to noise and its ability to yield consistent reconstructions and make use of the EM algorithm's ability to generalize to spectral images of any object without training. The hybrid approach achieves better performance than both the CNNs and EM alone for seen (included in CNN training) and unseen (excluded from CNN training) cubes for both the 25- and 100-channel cases. For the 25 spectral channels, the improvements from CNN to the hybrid model (CNN + EM) in terms of the mean-squared errors are between 14-26%. For 100 spectral channels, the improvements between 19-40% are attained with the largest improvement of 40% for the unseen data, to which the CNNs are not exposed during the training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源