论文标题
Calabi的可移动锥-Yau三倍在被统治的Fano歧管中
The movable cone of Calabi--Yau threefolds in ruled Fano manifolds
论文作者
论文摘要
我们明确地描述了一般完整的交点Calabi-yau的可移动锥的室内结构,该室内的三倍(n + 4)$(n + 4)$ - 尺寸$ \ Mathbb {p}^{n} $ dulo的index $ n + 1 $ and Picard Number的Fano faro;此外,发现这种数字是有限的calabi-yau三倍的所有二含头模型。
We describe explicitly the chamber structure of the movable cone for a general complete intersection Calabi--Yau threefold in a non-split $(n + 4)$-dimensional $\mathbb{P}^{n}$-ruled Fano manifold of index $n + 1$ and Picard number two. Moreover, all birational minimal models of such Calabi--Yau threefolds are found whose number is finite.