论文标题

为什么NLP模型在基本数学上摸索?对基于深度学习的单词解决者的调查

Why are NLP Models Fumbling at Elementary Math? A Survey of Deep Learning based Word Problem Solvers

论文作者

Sundaram, Sowmya S, Gurajada, Sairam, Fisichella, Marco, P, Deepak, Abraham, Savitha Sam

论文摘要

从过去十年的后半段开始,人们对开发自动解决数学单词问题(MWP)的算法越来越兴趣。这是一项具有挑战性且独特的任务,需要将表面级别的文本模式识别与数学推理混合在一起。尽管进行了广泛的研究,但我们仍然距离建立基本数学单词问题和有效解决方案的一般任务的强大表示。在本文中,我们批判性地研究了用于解决单词问题,他们的利弊以及未来挑战的各种模型。在过去的两年中,许多深度学习模型都在基准数据集上记录了竞争成果,从而对在此关头非常有用的文献进行了批判性和概念分析。我们退后一步,分析了为什么尽管如此,尽管学术上的利益丰富了,但主要使用的实验和数据集设计仍然是一个绊脚石。从仔细分析文献的有利位置,我们还努力为未来的数学单词问题研究提供路线图。

From the latter half of the last decade, there has been a growing interest in developing algorithms for automatically solving mathematical word problems (MWP). It is a challenging and unique task that demands blending surface level text pattern recognition with mathematical reasoning. In spite of extensive research, we are still miles away from building robust representations of elementary math word problems and effective solutions for the general task. In this paper, we critically examine the various models that have been developed for solving word problems, their pros and cons and the challenges ahead. In the last two years, a lot of deep learning models have recorded competing results on benchmark datasets, making a critical and conceptual analysis of literature highly useful at this juncture. We take a step back and analyse why, in spite of this abundance in scholarly interest, the predominantly used experiment and dataset designs continue to be a stumbling block. From the vantage point of having analyzed the literature closely, we also endeavour to provide a road-map for future math word problem research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源