论文标题
对随机人类运动预测的弱监督行动过渡学习
Weakly-supervised Action Transition Learning for Stochastic Human Motion Prediction
论文作者
论文摘要
我们介绍了以动作驱动的随机运动预测的任务,该预测旨在预测一系列动作标签和短运动历史的多个合理的未来动作。这与现有作品有所不同,后者预测不尊重任何特定动作类别的动议,或者遵循单个动作标签。特别是,解决此任务需要解决两个挑战:不同动作之间的过渡必须平稳;预测运动的长度取决于动作序列,并且在样品之间差异很大。由于我们无法现实地期望培训数据涵盖足够多样化的动作过渡和运动长度,因此我们提出了一种有效的培训策略,包括结合不同动作的多个动作并引入弱的监督形式,以鼓励平稳过渡。然后,我们设计了一个基于VAE的模型,该模型既以观察到的运动和动作标签序列为条件,从而使我们能够产生多个长度的合理的未来运动。我们通过与两个不同的时间编码模型(即RNN和变压器)探索其使用来说明我们的方法的普遍性。我们的方法的表现优于基线模型,该模型通过适应最先进的单个动作条件运动方法和随机人类运动预测方法来解决我们的新任务,即动作驱动的随机运动预测。我们的代码可在https://github.com/wei-mao-2019/wat上找到。
We introduce the task of action-driven stochastic human motion prediction, which aims to predict multiple plausible future motions given a sequence of action labels and a short motion history. This differs from existing works, which predict motions that either do not respect any specific action category, or follow a single action label. In particular, addressing this task requires tackling two challenges: The transitions between the different actions must be smooth; the length of the predicted motion depends on the action sequence and varies significantly across samples. As we cannot realistically expect training data to cover sufficiently diverse action transitions and motion lengths, we propose an effective training strategy consisting of combining multiple motions from different actions and introducing a weak form of supervision to encourage smooth transitions. We then design a VAE-based model conditioned on both the observed motion and the action label sequence, allowing us to generate multiple plausible future motions of varying length. We illustrate the generality of our approach by exploring its use with two different temporal encoding models, namely RNNs and Transformers. Our approach outperforms baseline models constructed by adapting state-of-the-art single action-conditioned motion generation methods and stochastic human motion prediction approaches to our new task of action-driven stochastic motion prediction. Our code is available at https://github.com/wei-mao-2019/WAT.