论文标题

在Hermitian邻接矩阵上的混合图

On Hermitian Adjacency Matrices for Mixed Graphs

论文作者

She, Tao, Wang, Chunxiang

论文摘要

我们研究了Mohar [1]引入的第二类(即N-Matrix)的混合图的光谱(即N-Matrix)。我们扩展了一些结果,并定义了一个新的Hermitian邻接矩阵,与弧相对应的条目从$ u $到$ v $等于$ k $ -th(或第三个)团结根,即$ω= cos(2π/k) + \ \\ textbf {i} \ sin(i} \ sin(2π/k),k {2π/k)对应于无向边缘的条目等于1,否则为0。在本文中,我们表征了混合图及其底层图的合适条件。在第4节中,我们确定了混合图的光谱半径上的尖锐上限,并提供相应的极端图。

We study the spectra of mixed graphs about its Hermitian adjacency matrix of the second kind (i.e. N-matrix) introduced by Mohar [1]. We extend some results and define one new Hermitian adjacency matrix, and the entry corresponding to an arc from $u$ to $v$ is equal to the $k$-th( or the third) root of unity, i.e. $ω = cos(2π/k) + \textbf{i} \ sin(2π/k), k {\geq} 3$; the entry corresponding to an undirected edge is equal to 1, and 0 otherwise. In this paper, we characterize the cospectrality conditions for a mixed graph and its underlying graph. In section 4, we determine a sharp upper bound on the spectral radius of mixed graphs, and provide the corresponding extremal graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源