论文标题
与隔离和标准发射率的Covid-19模型的均匀持久性的新分析方法
A novel analysis approach of uniform persistence for a COVID-19 model with quarantine and standard incidence rate
论文作者
论文摘要
提出了一种带隔离和标准发病率的冠状病毒疾病(COVID-19)模型,然后提出了一种新的分析方法,用于寻找COVID-19的最终下层传染性个体,这意味着Covid-19的大流行病在控制繁殖数字$ \ \ \ \ \ \ \ r} r} r} _ c} covid-calpocial均均匀持久。这种方法可以应用于其他相关的生物学模型,并且可以通过使用它来改进一些现有作品。此外,如果$ \ Mathcal {r} _ {c} <1 $,如果$ \ MATHCAL {r} _ {r} _ {c} = 1 $,则covid-19-forebirium $ v^0 $是本地渐近稳定(LAS),如果$ \ MATHCAL {r} _ {c} <1 $且线性稳定;如果$ v^0 $如果$ \ Mathcal {r} _ {C}> 1 $不稳定。
A coronavirus disease 2019 (COVID-19) model with quarantine and standard incidence rate is first developed, then a novel analysis approach for finding the ultimate lower bound of COVID-19 infectious individuals is proposed, which means that the COVID-19 pandemic is uniformly persistent if the control reproduction number $\mathcal{R}_{c}>1$. This approach can be applied to other related biomathematical models, and some existing works can be improved by using it. In addition, the COVID-19-free equilibrium $V^0$ is locally asymptotically stable (LAS) if $\mathcal{R}_{c}<1$ and linearly stable if $\mathcal{R}_{c}=1$, respectively; while $V^0$ is unstable if $\mathcal{R}_{c}>1$.