论文标题
基于伪data的组织病理学图像分类的自我监督联盟学习
Pseudo-Data based Self-Supervised Federated Learning for Classification of Histopathological Images
论文作者
论文摘要
计算机辅助诊断(CAD)可以帮助病理学家提高诊断准确性,以及癌症的一致性和可重复性。但是,仅来自单个中心(医院)接受组织病理学图像的CAD模型通常由于不同中心之间的紧张不一致而遭受泛化问题。在这项工作中,我们提出了一个基于伪DATA的自我监督联合学习(FL)框架,称为SSL-FT-BT,以提高CAD模型的诊断准确性和泛化。具体而言,伪组织病理学图像是从每个中心生成的,其中包含与该中心中真实图像相对应的固有和特定属性,但不包括隐私信息。然后将这些伪图像共享在中央服务器中,以进行自我监督学习(SSL)。然后,设计多任务SSL旨在根据数据特征充分学习中心特定的信息和常见的固有表示形式。此外,提出了一种新型的基于Barlow双胞胎的FL(FL-BT)算法,以通过进行对比学习来改善每个中心中CAD模型的局部训练,这使FL程序中全球模型的优化有益。三个公共组织病理学图像数据集的实验结果表明了所提出的SSL-FL-BT在诊断准确性和概括方面的有效性。
Computer-aided diagnosis (CAD) can help pathologists improve diagnostic accuracy together with consistency and repeatability for cancers. However, the CAD models trained with the histopathological images only from a single center (hospital) generally suffer from the generalization problem due to the straining inconsistencies among different centers. In this work, we propose a pseudo-data based self-supervised federated learning (FL) framework, named SSL-FT-BT, to improve both the diagnostic accuracy and generalization of CAD models. Specifically, the pseudo histopathological images are generated from each center, which contains inherent and specific properties corresponding to the real images in this center, but does not include the privacy information. These pseudo images are then shared in the central server for self-supervised learning (SSL). A multi-task SSL is then designed to fully learn both the center-specific information and common inherent representation according to the data characteristics. Moreover, a novel Barlow Twins based FL (FL-BT) algorithm is proposed to improve the local training for the CAD model in each center by conducting contrastive learning, which benefits the optimization of the global model in the FL procedure. The experimental results on three public histopathological image datasets indicate the effectiveness of the proposed SSL-FL-BT on both diagnostic accuracy and generalization.