论文标题

Hadamard矩阵与某个系列三元自偶代码有关

Hadamard matrices related to a certain series of ternary self-dual codes

论文作者

Araya, Makoto, Harada, Masaaki, Momihara, Koji

论文摘要

2013年,Nebe和Villar提供了一系列的三元自偶代码,长度为2美元(P+1)$,$ P $一致,$ 5 $ MODULO $ 8 $。结果,发现了第三个三元极端自动双重代码,长度为$ 60 $。我们表明,当$ p $一致至$ 5 $ modulo $ 24 $时,三元自偶代码包含订单$ 2(p+1)$的订单$ 2(p+1)$的代码字$ 24 $。此外,还表明三元自偶代码是由Hadamard矩阵的行生成的。我们还证明,第三个三元极端自动划分长度为$ 60 $,至少包含两个不等的hadamard矩阵。

In 2013, Nebe and Villar gave a series of ternary self-dual codes of length $2(p+1)$ for a prime $p$ congruent to $5$ modulo $8$. As a consequence, the third ternary extremal self-dual code of length $60$ was found. We show that the ternary self-dual code contains codewords which form a Hadamard matrix of order $2(p+1)$ when $p$ is congruent to $5$ modulo $24$. In addition, it is shown that the ternary self-dual code is generated by the rows of the Hadamard matrix. We also demonstrate that the third ternary extremal self-dual code of length $60$ contains at least two inequivalent Hadamard matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源