论文标题

曲线上的驯服帕纳克非阿贝尔杂货通讯

Tame parahoric nonabelian Hodge correspondence on curves

论文作者

Huang, Pengfei, Kydonakis, Georgios, Sun, Hao, Zhao, Lutian

论文摘要

通过对所涉及的对象实现加权过滤,可以充分描述向矢量束的非亚伯杂货对应。为了为一般复杂的还原组$ g $建立一个完全的对应关系,我们在bruhat-tits的意义上介绍了Parahoric集团计划给出的Torsors。结合了Riemann-hilbert对数的帕拉克连接的现有结果,这使得在$ \ text {gl} _n(\ nathbb {c} c})$ - case上,在非pact曲线上,Higgs捆绑包到基本组表示的完整Nonnonnon Nonnonnon Nonnonabelian Hodge对应。

The nonabelian Hodge correspondence for vector bundles over noncompact curves is adequately described by implementing a weighted filtration on the objects involved. In order to establish a full correspondence between a Dolbeault and a de Rham space for a general complex reductive group $G$, we introduce torsors given by parahoric group schemes in the sense of Bruhat--Tits. Combined with existing results on the Riemann--Hilbert correspondence for logarithmic parahoric connections, this gives a full nonabelian Hodge correspondence from Higgs bundles to fundamental group representations over a noncompact curve beyond the $\text{GL}_n(\mathbb{C})$-case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源