论文标题

GCONET+:一个更强的组协作共同空位对象检测器

GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector

论文作者

Zheng, Peng, Fu, Huazhu, Fan, Deng-Ping, Fan, Qi, Qin, Jie, Tai, Yu-Wing, Tang, Chi-Keung, Van Gool, Luc

论文摘要

在本文中,我们提出了一个新颖的端到端集团协作学习网络,称为GCONET+,该网络可以有效,高效(250 fps)在自然场景中识别共升性对象。拟议的GCONET+通过以下两个基本标准通过采矿共识表示来实现新的最新性能(COSOD):1)组内紧凑型通过使用我们的新型组亲和力模块(GAM)来更好地制定共同属性的共享属性,以更好地提高共同质量对象之间的一致性; 2)组间可分离性通过引入我们的新组协作模块(GCM)条件对不一致的共识进行调理,从而有效抑制嘈杂对象对输出的影响。为了进一步提高准确性,我们设计了一系列简单但有效的组件,如下所示:i)在语义层面上促进模型学习的经常性辅助分类模块(RACM); ii)一个置信度增强模块(CEM),以帮助该模型改善最终预测的质量; iii)基于组的对称三重态(GST)损失指导模型以学习更多歧视性特征。对三个具有挑战性的基准测试的广泛实验,即可可,COSOD3K和COSAL2015,这表明我们的GCONET+优于现有的12个尖端模型。代码已在https://github.com/zhengpeng7/gconet_plus上发布。

In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源