论文标题
树模型中的完整性身份验证
Integrity Authentication in Tree Models
论文作者
论文摘要
树型在机器学习和数据挖掘的实践中非常广泛使用。在本文中,我们研究了树模型中模型完整性身份验证的问题。通常,模型完整性身份验证的任务是设计\&实现用于检查/检测最终用户部署的模型是否已篡改或妥协的机制,例如模型上的恶意修改。我们提出了一个身份验证框架,该框架使模型构建器/分销商仅通过对模型进行少量的黑盒查询来嵌入签名并验证签名的存在。据我们所知,这是对树型嵌入签名的首次研究。我们提出的方法简单地找到了叶子的集合并修改其预测值,这不需要任何培训/测试数据或重新训练。大量公共分类数据集的实验证实,所提出的签名嵌入过程的成功率很高,同时仅引入最小的预测准确性损失。
Tree models are very widely used in practice of machine learning and data mining. In this paper, we study the problem of model integrity authentication in tree models. In general, the task of model integrity authentication is the design \& implementation of mechanisms for checking/detecting whether the model deployed for the end-users has been tampered with or compromised, e.g., malicious modifications on the model. We propose an authentication framework that enables the model builders/distributors to embed a signature to the tree model and authenticate the existence of the signature by only making a small number of black-box queries to the model. To the best of our knowledge, this is the first study of signature embedding on tree models. Our proposed method simply locates a collection of leaves and modifies their prediction values, which does not require any training/testing data nor any re-training. The experiments on a large number of public classification datasets confirm that the proposed signature embedding process has a high success rate while only introducing a minimal prediction accuracy loss.