论文标题
在几个最佳解码时使用ACK/NACK反馈的增量冗余
Incremental Redundancy With ACK/NACK Feedback at a Few Optimal Decoding Times
论文作者
论文摘要
使用ACK/NACK反馈的增量冗余可产生可变的停止回馈(VLSF)代码,这些代码被限制为具有$ M $解码时间,并在每个解码时对发射机有ACK/NACK反馈。本文着重于对随机VLSF代码的最大可实现速率的数值评估,这是二进制输入添加剂白色高斯噪声通道,二进制对称通道和二进制擦除通道(BEC)的$ m $的函数。利用Edgeworth和Petrov扩展,我们对长度为$ n $累积信息密度的尾巴概率进行了紧密的近似,对于任何一个块长$ n $来说都是准确的。我们将Yavas等人的非反应可实现性限制在VLSF代码上,$ M $解码时间与整数程序,以最大程度地减少在平均区块长度上受到平均误差概率,最小差距和整数约束的平均区块长度。我们开发了解决该程序的两种不同的方法。数值评估表明,Polyanskiy对VLSF代码的可实现性(假设$ M = \ infty $)可以使用所有三个频道的小$ M $来接近。对于BEC,我们考虑系统的传输,然后考虑随机线性喷泉编码。这使我们能够比以前的界限和新的VLSF代码获得更强的新可实现性约束力,而这些代码的速度进一步优于Polyanskiy的界限。
Incremental redundancy with ACK/NACK feedback produces a variable-length stop-feedback (VLSF) code constrained to have $m$ decoding times, with an ACK/NACK feedback to the transmitter at each decoding time. This paper focuses on the numerical evaluation of the maximal achievable rate of random VLSF codes as a function of $m$ for the binary-input additive white Gaussian noise channel, binary symmetric channel, and binary erasure channel (BEC). Leveraging Edgeworth and Petrov expansions, we develop tight approximations to the tail probability of length-$n$ cumulative information density that are accurate for any blocklength $n$. We reduce Yavas et al.'s non-asymptotic achievability bound on VLSF codes with $m$ decoding times to an integer program of minimizing the upper bound on the average blocklength subject to the average error probability, minimum gap, and integer constraints. We develop two distinct methods to solve this program. Numerical evaluations show that Polyanskiy's achievability bound for VLSF codes, which assumes $m = \infty$, can be approached with a small $m$ for all three channels. For BEC, we consider systematic transmission followed by random linear fountain coding. This allows us to obtain a new achievability bound stronger than a previous bound and new VLSF codes whose rate further outperforms Polyanskiy's bound.